1,026 research outputs found

    Weak nodes detection in urban transport systems: Planning for resilience in Singapore

    Full text link
    The availability of massive data-sets describing human mobility offers the possibility to design simulation tools to monitor and improve the resilience of transport systems in response to traumatic events such as natural and man-made disasters (e.g. floods terroristic attacks, etc...). In this perspective, we propose ACHILLES, an application to model people's movements in a given transport system mode through a multiplex network representation based on mobility data. ACHILLES is a web-based application which provides an easy-to-use interface to explore the mobility fluxes and the connectivity of every urban zone in a city, as well as to visualize changes in the transport system resulting from the addition or removal of transport modes, urban zones, and single stops. Notably, our application allows the user to assess the overall resilience of the transport network by identifying its weakest node, i.e. Urban Achilles Heel, with reference to the ancient Greek mythology. To demonstrate the impact of ACHILLES for humanitarian aid we consider its application to a real-world scenario by exploring human mobility in Singapore in response to flood prevention.Comment: 9 pages, 6 figures, IEEE Data Science and Advanced Analytic

    An analytical framework to nowcast well-being using mobile phone data

    Full text link
    An intriguing open question is whether measurements made on Big Data recording human activities can yield us high-fidelity proxies of socio-economic development and well-being. Can we monitor and predict the socio-economic development of a territory just by observing the behavior of its inhabitants through the lens of Big Data? In this paper, we design a data-driven analytical framework that uses mobility measures and social measures extracted from mobile phone data to estimate indicators for socio-economic development and well-being. We discover that the diversity of mobility, defined in terms of entropy of the individual users' trajectories, exhibits (i) significant correlation with two different socio-economic indicators and (ii) the highest importance in predictive models built to predict the socio-economic indicators. Our analytical framework opens an interesting perspective to study human behavior through the lens of Big Data by means of new statistical indicators that quantify and possibly "nowcast" the well-being and the socio-economic development of a territory

    PlayeRank: data-driven performance evaluation and player ranking in soccer via a machine learning approach

    Full text link
    The problem of evaluating the performance of soccer players is attracting the interest of many companies and the scientific community, thanks to the availability of massive data capturing all the events generated during a match (e.g., tackles, passes, shots, etc.). Unfortunately, there is no consolidated and widely accepted metric for measuring performance quality in all of its facets. In this paper, we design and implement PlayeRank, a data-driven framework that offers a principled multi-dimensional and role-aware evaluation of the performance of soccer players. We build our framework by deploying a massive dataset of soccer-logs and consisting of millions of match events pertaining to four seasons of 18 prominent soccer competitions. By comparing PlayeRank to known algorithms for performance evaluation in soccer, and by exploiting a dataset of players' evaluations made by professional soccer scouts, we show that PlayeRank significantly outperforms the competitors. We also explore the ratings produced by {\sf PlayeRank} and discover interesting patterns about the nature of excellent performances and what distinguishes the top players from the others. At the end, we explore some applications of PlayeRank -- i.e. searching players and player versatility --- showing its flexibility and efficiency, which makes it worth to be used in the design of a scalable platform for soccer analytics

    Deep Gravity: enhancing mobility flows generation with deep neural networks and geographic information

    Full text link
    The movements of individuals within and among cities influence key aspects of our society, such as the objective and subjective well-being, the diffusion of innovations, the spreading of epidemics, and the quality of the environment. For this reason, there is increasing interest around the challenging problem of flow generation, which consists in generating the flows between a set of geographic locations, given the characteristics of the locations and without any information about the real flows. Existing solutions to flow generation are mainly based on mechanistic approaches, such as the gravity model and the radiation model, which suffer from underfitting and overdispersion, neglect important variables such as land use and the transportation network, and cannot describe non-linear relationships between these variables. In this paper, we propose the Multi-Feature Deep Gravity (MFDG) model as an effective solution to flow generation. On the one hand, the MFDG model exploits a large number of variables (e.g., characteristics of land use and the road network; transport, food, and health facilities) extracted from voluntary geographic information data (OpenStreetMap). On the other hand, our model exploits deep neural networks to describe complex non-linear relationships between those variables. Our experiments, conducted on commuting flows in England, show that the MFDG model achieves a significant increase in the performance (up to 250\% for highly populated areas) than mechanistic models that do not use deep neural networks, or that do not exploit geographic voluntary data. Our work presents a precise definition of the flow generation problem, which is a novel task for the deep learning community working with spatio-temporal data, and proposes a deep neural network model that significantly outperforms current state-of-the-art statistical models

    Human Mobility Modelling:Exploration and Preferential Return Meet the Gravity Model

    Get PDF
    AbstractModeling the properties of individual human mobility is a challenging task that has received increasing attention in the last decade. Since mobility is a complex system, when modeling individual human mobility one should take into account that human movements at a collective level influence, and are influenced by, human movement at an individual level. In this paper we propose the d-EPR model, which exploits collective information and the gravity model to drive the movements of an individual and the exploration of new places on the mobility space. We implement our model to simulate the mobility of thousands synthetic individuals, and compare the synthetic movements with real trajectories of mobile phone users and synthetic trajectories produced by a prominent individual mobility model. We show that the distributions of global mobility measures computed on the trajectories produced by the d-EPR model are much closer to empirical data, highlighting the importance of considering collective information when simulating individual human mobility
    corecore